Induction proofs - practice!

- **1.** Prove that $f(n) = 6n^2 + 2n + 15$ is odd for all $n \in \mathbb{Z}^+$.
- **2.** Prove that $n! > 2^n$ for $n \ge 4$.

3. If *n* is a non-negative integer, show that $n^5 - n$ is divisible by 5.

4. For each $n \in \mathbb{N}$, it follows that $2^n \le 2^{n+1} - 2^{n-1} - 1$. Show using induction.

5. Prove that $(1+2+3+\cdots+n)^2 = 1^3+2^3+3^3+\cdots+n^3$ for every $n \in \mathbb{Z}^+$.

- 6. Prove by induction that 1 + 2 + 3 + 4 + ... + n = n(n+1)/2 for $n \in \mathbb{Z}^+$.
- 7. Prove by induction that $1 + 3 + 5 + 7 + ... + (2n 1) = n^2$ for $n \in \mathbb{Z}^+$.

8. Show by induction that $2^1 + 2^2 + 2^3 + \ldots + 2^n = 2^{n+1} - 2$ for $n \in \mathbb{Z}^+$.

9. For *n* an integer greater or equal to 3, show that $n^{n+1} > (n+1)^n$.

10. Prove that for $n \in \mathbb{Z}^+$, a $2^n \times 2^n$ chessboard with any one square removed can be tiled by these 3-square L-tiles:

11. Take any natural number *n*. If *n* is even, divide it by 2 to get n/2. If *n* is odd, multiply it by 3 and add 1 to obtain 3n + 1. Repeat the process indefinitely. Paul Erdös will owe you \$500 if you can show that, no matter what number *n* you start with, this process will eventually hit 1. But be warned: link.