
Discontinuous Forcing Functions Example

Problem: Consider an idealized LCR circuit with no resistance such that its natural frequency 1/
√

CL = β . Assume
that initially there is no charge or current in the circuit. From time t = π to time t = 2π we impose some forcing at
some frequency ω 6= β of the form sin(ωt). The initial value problem for the charge q(t) is therefore:

q′′+β
2q =


0, 0≤ t < π

sin(ωt), π ≤ t < 2π

0, t ≥ 2π

, q(0) = q′(0) = 0.

What is the charge in the circuit q(t) at time t?

————————————————

Solution:
We’ll solve using Laplace transforms. We begin by writing the RHS using unit step functions.

sin(ωt)(uπ(t)−u2π(t)) =


0, 0≤ t < π

sin(ωt), π ≤ t < 2π

0, t ≥ 2π

.

Our IVP can therefore be re-written as q′′+β 2q = sin(ωt)uπ(t)− sin(ωt)u2π(t), q(0) = q′(0) = 0. Now we take the
Laplace Transform of both sides of the equation. Let Q(s) = L {q(t)}. Then

L
{

q′′+β
2q
}

= L {sin(ωt)uπ(t)− sin(ωt)u2π(t)}
L
{

q′′
}
+β

2L {q} = L {sin(ωt)uπ(t)}−L {sin(ωt)u2π(t)} ,

since L is a linear operator. Going term-by-term:

• L {q′′}= s2Q(s)− sq(0)−q′(0) = s2Q(s) since q(0) = q′(0) = 0.

• β 2L {q}= β 2Q(s)

• Since L { f (t)uc(t)}= e−csL { f (t + c)},

L {sin(ωt)uπ(t)}= e−πsL {sin(ω(t +π))}
= e−πsL {sin(ω(t +π))}
= e−πsL {sin(ωt)cos(ωπ)+ sin(ωπ)cos(ωt)}
= e−πs cos(ωπ)L {sin(ωt)}+ e−πs sin(ωπ)L {cos(ωt)}

⇒L {sin(ωt)uπ(t)}= cos(ωπ)
ωe−πs

s2 +ω2 + sin(ωπ)
se−πs

s2 +ω2 .

• Similarly we find L {sin(ωt)u2π(t)}

L {sin(ωt)uπ(t)}= cos(2ωπ)
ωe−2πs

s2 +ω2 + sin(2ωπ)
se−2πs

s2 +ω2 .

Therefore the transformed IVP q′′+β 2q = sin(ωt)uπ(t)− sin(ωt)u2π(t), q(0) = q′(0) = 0 is

s2Q(s)+β
2Q(s) = cos(ωπ)

ωe−πs

s2 +ω2 + sin(ωπ)
se−πs

s2 +ω2 − cos(2ωπ)
ωe−2πs

s2 +ω2 − sin(2ωπ)
se−2πs

s2 +ω2 .

Solving for Q(s) we find

Q(s) = cos(ωπ)
ωe−πs

(s2 +ω2)(s2 +β 2)
+ sin(ωπ)

se−πs

(s2 +ω2)(s2 +β 2)

− cos(2ωπ)
ωe−2πs

(s2 +ω2)(s2 +β 2)
− sin(2ωπ)

se−2πs

(s2 +ω2)(s2 +β 2)
.
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To find the charge q(t) all that’s left to do is invert the transform, q(t) = L −1 {Q(s)}. This is the most involved part!
Use partial fraction decompositions to split this up into bits we recognize from the table. We use

1
(s2 +ω2)(s2 +β 2)

=
A

(s2 +ω2)
+

B
(s2 +β 2)

s
(s2 +ω2)(s2 +β 2)

=
Cs

(s2 +ω2)
+

Ds
(s2 +β 2)

since we can find L −1
{

a/(s2 +a2)
}

and L −1
{

s/(s2 +a2)
}

in the table (a can be β or ω). We find A = C =

1/(β 2−ω2), B = D =−1/(β 2−ω2). Thus

Q(s) =
1

(β 2−ω2)

[
cos(ωπ)

(
ωe−πs

s2 +ω2 −
ωe−πs

s2 +β 2

)
+ sin(ωπ)

(
se−πs

s2 +ω2 −
se−πs

s2 +β 2

)
−cos(2ωπ)

(
ωe−2πs

s2 +ω2 −
ωe−2πs

s2 +β 2

)
− sin(2ωπ)

(
se−2πs

s2 +ω2 −
se−2πs

s2 +β 2

)]
(we could simplify further but we’re leaving the pieces we recognize from the table alone!). Now we invert. We can
go term-by-term on the RHS since L −1 is linear. In summary,

• L −1
{

1/(s2 +a2)
}
= sin(at)/a and L −1

{
s/(s2 +a2)

}
= cos(at) where a = ω or β .

• Since L −1
{

1/(s2 +a2)
}
= sin(at)/a and L −1 {F(s)e−cs}= f (t−c)uc(t) where F(s)=L { f (t)}, L −1

{
e−nπs/(s2 +a2)

}
=

sin(a(t−nπ))unπ(t)/a, where a can be ω or β , n can be 1 or 3.

• Since L −1
{

s/(s2 +a2)
}
= cos(at) and L −1 {F(s)e−cs}= f (t−c)uc(t) where F(s)=L { f (t)}, L −1

{
se−nπs/(s2 +a2)

}
=

cos(a(t−nπ))unπ(t), where a can be ω or β , n can be 1 or 3.

Using these inverse transforms,

L −1 {Q(s)} = L−1
{

1
(β 2−ω2)

[
cos(ωπ)

(
ωe−πs

s2 +ω2 −
ωe−πs

s2 +β 2

)
+ sin(ωπ)

(
se−πs

s2 +ω2 −
se−πs

s2 +β 2

)
−cos(2ωπ)

(
ωe−2πs

s2 +ω2 −
ωe−2πs

s2 +β 2

)
− sin(2ωπ)

(
se−2πs

s2 +ω2 −
se−2πs

s2 +β 2

)]}
becomes

q(t) =
1

(β 2−ω2)

[
cos(ωπ)

(
sin(ω(t−π))− ω sin(β (t−π))

β

)
uπ(t)+ sin(ωπ)(cos(ω(t−π))− cos(β (t−π)))uπ(t)

−cos(2ωπ)

(
sin(ω(t−2π))− ω sin(β (t−2π))

β

)
u2π(t)− sin(2ωπ)(cos(ω(t−2π))− cos(β (t−2π)))u2π(t)

]
.

Simplifying we obtain:

q(t) =
1

β (β 2−ω2)
[β sin(ωt)−ω cos(ωπ)sin(β (t−π))−β sin(ωπ)cos(β (t−π))]uπ(t)

− 1
β (β 2−ω2)

[β sin(ωt)−ω cos(2ωπ)sin(β (t−2π))−β sin(2ωπ)cos(β (t−2π))]u2π(t)

Alternatively, we could write q(t) as:

q(t) =


0, 0≤ t < π

1
β (β 2−ω2)

[β sin(ωt)−ω cos(ωπ)sin(β (t−π))−β sin(ωπ)cos(β (t−π))] , π ≤ t < 2π

1
β (β 2−ω2)

[β sin(ωt)−ω cos(ωπ)sin(β (t−π))−β sin(ωπ)cos(β (t−π))] t ≥ 2π

− 1
β (β 2−ω2)

[β sin(ωt)−ω cos(2ωπ)sin(β (t−2π))−β sin(2ωπ)cos(β (t−2π))] ,

This is a very long and detailed problem, but the techniques are identical to those we used in class. There’s more
algebra and more to keep track of though - be careful! If you can solve problems like this, you’re all set when it
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comes to IVPs with discontinuous forcing functions. FYI for tests or exams you would not be expected to reduce your
solution using all the fancy trig identities - but you *would* be expected to use the addition identities to compute the
transform in the first place.

Note: There’s a more straightforward way of obtaining the inverse transform. We can use convolution integrals.
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