Computing Eigenvalues and Eigenvectors

Example 1:

Find the eigenvalues and eigenvectors of the matrix

$$
A=\left(\begin{array}{ll}
2 & -3 \\
1 & -2
\end{array}\right)
$$

Solution:

The eigenvalues λ and eigenvectors \vec{v} satisfy the matrix equation $A \vec{v}=\lambda \vec{v}$ or, re-arranging terms,

$$
(A-\lambda I) \vec{v}=0, \text { where } I \text { is the } 2 \times 2 \text { identity matrix }\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) .
$$

In order for $(A-\lambda I) \vec{v}=0$ to have a non-trivial (i.e., non-zero) solution, a necessary and suffucient condition is:

$$
\operatorname{det}(A-\lambda I)=0
$$

For an $n \times n$ matrix A, this will give us an $n^{t h}$-order polynomial, the characteristic equation, whose roots are the eigenvalues λ. In this case $n=2$. Finding this characteristic equation,

$$
\begin{aligned}
\operatorname{det}(A-\lambda I) & =0 \\
\operatorname{det}\left\{\left(\begin{array}{cc}
2 & -3 \\
1 & -2
\end{array}\right)-\lambda\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right)\right\} & =0 \\
\operatorname{det}\left(\begin{array}{cc}
2-\lambda-3 \\
1 & -2-\lambda
\end{array}\right) & =0 \\
(2-\lambda)(-2-\lambda)+3 & =0 \\
\lambda^{2}-1 & =0 .
\end{aligned}
$$

Therefore our characteristic equation is $\lambda^{2}-1=0$. Its roots, $\lambda= \pm 1$, are the eigenvalues. Now we need to find corresponding eigenvectors.
To find the eigenvector $\overrightarrow{v_{1}}$ corresponding to the eigenvalue $\lambda_{1}=1$ we must solve $\left(A-\lambda_{1} I\right) \overrightarrow{v_{1}}=0$. Substituting for A and λ_{1} gives

$$
\begin{aligned}
{\left[\left(\begin{array}{ll}
2 & -3 \\
1 & -2
\end{array}\right)-1\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\right]\binom{u_{1}}{u_{2}} } & =\binom{0}{0} \\
\left(\begin{array}{ll}
1 & -3 \\
1 & -3
\end{array}\right)\binom{u_{1}}{u_{2}} & =\binom{0}{0}
\end{aligned}
$$

where $\vec{v}=\binom{u_{1}}{u_{2}}$. Note that this matrix equation is equivalent to the single scalar equation $u_{1}-3 u_{2}=0$. Therefore solutions are found setting an arbitrary value for one of u_{1} or $u_{2}-$ say, $u_{2}=s$ - and determining the other of u_{1} or u_{2} accordingly - here, $u_{1}=3 \mathrm{~s}$. Thus the eigenvectors associated with the eigenvalue $\lambda_{1}=1$ can be written as

$$
\overrightarrow{v_{1}}=s\binom{3}{1}
$$

If we want AN eigenvector, we can choose $\overrightarrow{v_{1}}=\binom{3}{1}$.

Aside: Notice that eigenvectors are unique but only up to a multiplicative factor!
Showing this: Assume \vec{v} is the eigenvector associated with the eigenvalue λ of the matrix A. We can show that $s \vec{v}$ is also an eigenvector associated with the eigenvalue λ of the matrix A for any scalar s : We know that λ, \vec{v} satisfy the equation $A \vec{v}=\lambda \vec{v}$ (by the definition of eigenvalues of eigenvectors/eigenvalues). Multiplying both sides by the scalar s we obtain $s A \vec{v}=s \lambda \vec{v}$. Exploiting commutativity of scalar multiplication, we can write this as $A(s \vec{v})=\lambda(s \vec{v})$. Thus $s \vec{v}$ is also an eigenvector associated with the eigenvalue λ of the matrix A.

Note: ALL eigenvectors associated with the eigenvalue $\lambda_{1}=1$, when joined with the zero vector, form a subspace. The same is true for $\lambda_{2}=-1$. These subspaces are called eigenspaces.

To find the eigenvector $\overrightarrow{v_{2}}$ corresponding to the eigenvalue $\lambda_{2}=-1$ we must solve $\left(A-\lambda_{2} I\right) \overrightarrow{\nu_{2}}=0$. Substituting for A and λ_{2} gives

$$
\begin{aligned}
{\left[\left(\begin{array}{ll}
2 & -3 \\
1 & -2
\end{array}\right)-(-1)\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\right]\binom{u_{1}}{u_{2}} } & =\binom{0}{0} \\
\left(\begin{array}{ll}
3 & -3 \\
1 & -1
\end{array}\right)\binom{u_{1}}{u_{2}} & =\binom{0}{0},
\end{aligned}
$$

where $\vec{v}=\binom{u_{1}}{u_{2}}$.Note that this matrix equation is equivalent to the single scalar equation $u_{1}-u_{2}=0$. Therefore solutions are found setting an arbitrary value for one of u_{1} or $u_{2}-$ say, $u_{2}=s$ - and determining the other of u_{1} or u_{2} accordingly - here, $u_{1}=s$. Thus the eigenvectors associated with the eigenvalue $\lambda_{2}=-1$ can be written as

$$
\overrightarrow{v_{2}}=s\binom{1}{1} .
$$

If we want AN eigenvector, we can choose $\overrightarrow{v_{2}}=\binom{1}{1}$.
Answer: The matrix A has eigenvalues $\lambda_{1}=1$ and $\lambda_{2}=-1$. The corresponding eigenvectors for $\lambda_{1}=1$ are $\vec{v}_{1}=s\binom{3}{1}$, and the corresponding eigenvectors for $\lambda_{2}=-1$ are $\vec{v}_{2}=t\binom{1}{1}$, for arbitrary scalar parameters s and t.

Example 2: Find the eigenvalues and eigenvectors of the matrix

$$
A=\left(\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right) .
$$

Solution: The eigenvalues λ and eigenvectors \vec{v} satisfy the matrix equation $A \vec{v}=\lambda \vec{v}$ or, re-arranging terms,

$$
(A-\lambda I) \vec{v}=0, \text { where } I \text { is the } 2 \times 2 \text { identity matrix }\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) .
$$

In order for $(A-\lambda I) \vec{v}=0$ to have a non-trivial (i.e., non-zero) solution, a necessary and suffucient condition is:

$$
\operatorname{det}(A-\lambda I)=0 .
$$

For an $n \times n$ matrix A, this will give us an $n^{\text {th }}$-order polynomial, the characteristic equation, whose roots are the eigenvalues λ. In this case $n=2$. Finding this characteristic equation,

$$
\begin{aligned}
\operatorname{det}(A-\lambda I) & =0 \\
\operatorname{det}\left\{\left(\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right)-\lambda\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right)\right\} & =0 \\
\operatorname{det}\left(\begin{array}{cc}
1-\lambda & 1 \\
-1 & 1-\lambda
\end{array}\right) & =0 \\
(1-\lambda)^{2}+1 & =0 \\
(\lambda-1)^{2} & =-1 \\
\lambda-1 & = \pm i \\
\lambda & =1 \pm i
\end{aligned}
$$

Therefore our characteristic equation is $(\lambda-1)^{2}+1=0$. Its roots, $\lambda=1 \pm i$, are the eigenvalues. Now we need to find corresponding eigenvectors.
To find an eigenvector $\overrightarrow{v_{1}}$ corresponding to the eigenvalue $\lambda_{1}=1+i$ we must solve $\left(A-\lambda_{1} I\right) \overrightarrow{v_{1}}=0$. Substituting for A and λ_{1} gives

$$
\begin{aligned}
{\left[\left(\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right)-(1+i)\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right)\right]\binom{u_{1}}{u_{2}} } & =\binom{0}{0} \\
\left(\begin{array}{cc}
-i & 1 \\
-1 & -i
\end{array}\right)\binom{u_{1}}{u_{2}} & =\binom{0}{0} \\
\binom{-i u_{1}+u_{2}}{-u_{1}-i u_{2}} & =\binom{0}{0}
\end{aligned}
$$

where $\vec{v}=\binom{u_{1}}{u_{2}}$. Note that this matrix equation is equivalent to the single scalar equation $-i u_{1}+u_{2}=0$. How is that equivalent to the other scalar equation $-u_{1}-i u_{2}=0$? Multiply both sides of the equation by i to get

$$
(i)\left(-u_{1}\right)-i\left(i u_{2}\right)=0 \Rightarrow-i u_{1}+u_{2}=0
$$

Therefore solutions are found setting an arbitrary value for one of u_{1} or u_{2} - say, $u_{2}=1$ - and determining the other of u_{1} or u_{2} accordingly - here, $u_{1}=-i$. Thus an eigenvector associated with the eigenvalue $\lambda_{1}=1+i$ is

$$
\overrightarrow{v_{1}}=\binom{-i}{1}
$$

To find an eigenvector $\overrightarrow{v_{2}}$ corresponding to the eigenvalue $\lambda_{2}=1-i$ we must solve $\left(A-\lambda_{2} I\right) \overrightarrow{v_{2}}=0$. Substituting for A and λ_{2} gives

$$
\begin{aligned}
{\left[\left(\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right)-(1-i)\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right)\right]\binom{u_{1}}{u_{2}} } & =\binom{0}{0} \\
\left(\begin{array}{cc}
i & 1 \\
-1 & i
\end{array}\right)\binom{u_{1}}{u_{2}} & =\binom{0}{0} \\
\binom{i u_{1}+u_{2}}{-u_{1}+i u_{2}} & =\binom{0}{0}
\end{aligned}
$$

where $\vec{v}=\binom{u_{1}}{u_{2}}$.Note that this matrix equation is equivalent to the single scalar equation $i u_{1}+u_{2}=0$. Therefore solutions are found setting an arbitrary value for one of u_{1} or u_{2} - say, $u_{2}=1$ - and determining the other of u_{1} or u_{2} accordingly - here, $u_{1}=i$. Thus an eigenvectors associated with the eigenvalue $\lambda_{2}=1-i$ is

$$
\overrightarrow{v_{2}}=\binom{i}{1} .
$$

Answer: The matrix A has eigenvalue $\lambda_{1}=1+i$ with corresponding eigenvector $\overrightarrow{v_{1}}=\binom{-i}{1}$ and eigenvalue $\lambda_{2}=1-i$ with corresponding eigenvector $\overrightarrow{v_{2}}=\binom{i}{1}$.

But remember any scalar multiple of the eigenvectors is still an eigenvector! For example, $\overrightarrow{v_{1}}=\binom{1}{i}$, too.

Example 3:

Find the eigenvalues and eigenvectors of the matrix

$$
A=\left(\begin{array}{ccc}
1 & 2 & -1 \\
1 & 0 & 1 \\
4 & -4 & 5
\end{array}\right)
$$

Solution:

The eigenvalues λ and eigenvectors \vec{v} satisfy the matrix equation $A \vec{v}=\lambda \vec{v}$ or, re-arranging terms,

$$
(A-\lambda I) \vec{v}=0 \text {, where } I \text { is the } 3 \times 3 \text { identity matrix }\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) .
$$

In order for $(A-\lambda I) \vec{v}=0$ to have a non-trivial (i.e., non-zero) solution, a necessary and suffucient condition is:

$$
\operatorname{det}(A-\lambda I)=0 .
$$

For an $n \times n$ matrix A, this will give us an $n^{\text {th }}$ - order polynomial, the characteristic equation, whose roots are the eigenvalues λ. In this case $n=2$. Finding this characteristic equation,

$$
\begin{aligned}
\operatorname{det}(A-\lambda I) & =0 \\
\operatorname{det}\left\{\left(\begin{array}{ccc}
1 & 2 & -1 \\
1 & 0 & 1 \\
4 & -4 & 5
\end{array}\right)-\lambda\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\right\} & =0 \\
\operatorname{det}\left(\begin{array}{ccc}
1-\lambda & 2 & -1 \\
1 & -\lambda & 1 \\
4 & -4 & 5-\lambda
\end{array}\right) & =0 \\
(1-\lambda)[-\lambda(5-\lambda)+4]-2[(5-\lambda)-4]-1[-4+4 \lambda] & =0 \\
(\lambda-1)(\lambda-2)(\lambda-3) & =0,
\end{aligned}
$$

after some simplification. The roots of this characteristic equation correspond to the eigenvalues of A. Thus we find that the eigenvalues of A are $\lambda_{1}=1, \lambda_{2}=2$, and $\lambda_{3}=3$.

Now we need to find the eigenvectors. To find the eigenvector $\overrightarrow{v_{1}}$ corresponding to the eigenvalue $\lambda_{1}=1$ we must solve $\left(A-\lambda_{1} I\right) \overrightarrow{v_{1}}=0$. Substituting for A and λ_{1} gives

$$
\begin{aligned}
{\left[\left(\begin{array}{ccc}
1 & 2 & -1 \\
1 & 0 & 1 \\
4 & -4 & 5
\end{array}\right)-(1)\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\right]\left(\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right) } & =\binom{0}{0} \\
\left(\begin{array}{ccc}
0 & 2 & -1 \\
1 & -1 & 1 \\
4 & -4 & 4
\end{array}\right)\left(\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right) & =\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right),
\end{aligned}
$$

where $\vec{v}_{1}=\left(\begin{array}{l}u_{1} \\ u_{2} \\ u_{3}\end{array}\right)$. Using Gaussian elimination (elementary row operations), we can find that this matrix equation is equivalent to the scalar equations (1) $2 u_{2}-u_{3}=0$ and (2) $u_{1}-u_{2}+u_{3}=0$. We can obtain solutions by setting an aribtrary value to one of the u_{1}, u_{2}, or $u_{3}-$ say $u_{2}=s$. Then from (1) we find $u_{3}=2 s$; then after that from (2) we find $u_{1}=-s$. Thus the eigenvectors associated with the eigenvalue $\lambda_{1}=1$ can be written as

$$
\overrightarrow{v_{1}}=s\left(\begin{array}{c}
-1 \\
1 \\
2
\end{array}\right) .
$$

If we want AN eigenvector, we can choose $\overrightarrow{v_{1}}=\left(\begin{array}{c}-1 \\ 1 \\ 2\end{array}\right)$ (see note in previous problem concerning uniqueness of eigenvectors only up to multiplicative constants).
To find the eigenvector $\overrightarrow{v_{2}}$ corresponding to the eigenvalue $\lambda_{2}=2$ we must solve $\left(A-\lambda_{2} I\right) \overrightarrow{v_{2}}=0$. Substituting for A and λ_{2} gives

$$
\begin{aligned}
{\left[\left(\begin{array}{ccc}
1 & 2 & -1 \\
1 & 0 & 1 \\
4 & -4 & 5
\end{array}\right)-(2)\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\right]\left(\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right) } & =\binom{0}{0} \\
\left(\begin{array}{ccc}
-1 & 2 & -1 \\
1 & -2 & 1 \\
4 & -4 & 3
\end{array}\right)\left(\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right) & =\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right),
\end{aligned}
$$

where $\vec{v}_{2}=\left(\begin{array}{l}u_{1} \\ u_{2} \\ u_{3}\end{array}\right)$. Using Gaussian elimination (elementary row operations), we can find that this matrix equation is equivalent to the scalar equations (1) $u_{1}-2 u_{2}+u_{3}=0$ and (2) $4 u_{1}-4 u_{2}+3 u_{3}=0$. We can obtain solutions by setting an aribtrary value to one of the u_{1}, u_{2}, or u_{3} - say $u_{2}=s$. Then from solving (1) we find $u_{3}=2 s-u_{1}$; plugging that into (2) we find $4 u_{1}-4 s+3\left(2 s-u_{1}\right)=0$ or $u_{1}=-2 s$. Then $u_{3}=4 s$. Thus the eigenvectors associated with the eigenvalue $\lambda_{2}=2$ can be written as

$$
\overrightarrow{v_{2}}=s\left(\begin{array}{c}
-2 \\
1 \\
4
\end{array}\right) .
$$

If we want AN eigenvector, we can choose $\overrightarrow{v_{2}}=\left(\begin{array}{c}-2 \\ 1 \\ 4\end{array}\right)$.
Finally, to find the eigenvector $\overrightarrow{v_{3}}$ corresponding to the eigenvalue $\lambda_{3}=3$ we must solve $\left(A-\lambda_{3} I\right) \overrightarrow{v_{3}}=0$. Substituting for A and λ_{3} gives

$$
\begin{aligned}
& {\left[\left(\begin{array}{ccc}
1 & 2 & -1 \\
1 & 0 & 1 \\
4 & -4 & 5
\end{array}\right)-(3)\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\right]\left(\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right)=}=\binom{0}{0} \\
&\left(\begin{array}{ccc}
-2 & 2 & -1 \\
1 & -3 & 1 \\
4 & -4 & 2
\end{array}\right)\left(\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right),
\end{aligned}
$$

where $\vec{v}_{3}=\left(\begin{array}{l}u_{1} \\ u_{2} \\ u_{3}\end{array}\right)$. Using Gaussian elimination (elementary row operations), we can find that this matrix equation is equivalent to the scalar equations (1) $-2 u_{1}+2 u_{2}-u_{3}=0$ and (2) $u_{1}-3 u_{2}+u_{3}=0$. We can obtain solutions by setting an aribtrary value to one of the u_{1}, u_{2}, or $u_{3}-$ say $u_{1}=s$. Then from solving (1) we find $u_{3}=-2 s+2 u_{2}$; plugging that into (2) we find $s-3 u_{2}+\left(-2 s+2 u_{2}\right)=0$ or $u_{2}=-s$. Then $u_{3}=-4 s$. Thus the eigenvectors associated with the eigenvalue $\lambda_{3}=2$ can be written as

$$
\vec{v}_{3}=s\left(\begin{array}{c}
1 \\
-1 \\
-4
\end{array}\right)
$$

If we want $A N$ eigenvector, we can choose $\overrightarrow{v_{3}}=\left(\begin{array}{c}1 \\ -1 \\ -4\end{array}\right)$.
Answer: The matrix A has eigenvalues $\lambda_{1}=1, \lambda_{2}=2$, and $\lambda_{3}=3$. The corresponding eigenvectors for $\lambda_{1}=$ 1 are $\vec{v}_{1}=r\left(\begin{array}{c}-1 \\ 1 \\ 2\end{array}\right)$, the corresponding eigenvectors for $\lambda_{2}=2$ are $\vec{v}_{2}=s\left(\begin{array}{c}-2 \\ 1 \\ 4\end{array}\right)$, and the corresponding eigenvectors for $\lambda_{3}=2$ are $\vec{v}_{3}=t\left(\begin{array}{c}1 \\ -1 \\ -4\end{array}\right)$, for arbitrary scalar parameters r, s and t.

