Forced Oscillations Example

Consider the forced LCR circuit, which can be described by:

$$
Q^{\prime \prime}(t)+R Q^{\prime}(t)+\frac{1}{C} Q=F \cos (\beta t), \quad Q(0)=0, \quad Q^{\prime}(0)=1
$$

where $\mathrm{Q}(\mathrm{t})$ is the charge at time t, R the resistance, C the capacitance, and the inductance $L=1$. The forcing has amplitude F and frequency β.
On the following page you will find plots of different solutions $Q(t)$ for various values of R, C, F, and ω, corresponding in no particular order to:

A $R=1, C=1 / 100, F=1, \beta=9 \Rightarrow$
$Q^{\prime \prime}(t)+Q^{\prime}(t)+100 Q=\cos (9 t), \quad Q(0)=0, \quad Q^{\prime}(0)=1$.
B $R=0, C=1 / 16, F=1, \beta=4 \Rightarrow$

$$
Q^{\prime \prime}(t)+16 Q=\cos (4 t), \quad Q(0)=0, \quad Q^{\prime}(0)=1
$$

C $R=0, C=1 / 16, F=0, \beta$ not relevant \Rightarrow

$$
Q^{\prime \prime}(t)+16 Q=0, \quad Q(0)=0, \quad Q^{\prime}(0)=1
$$

D $R=1, C=1 / 100, F=1, \beta=10 \Rightarrow$

$$
Q^{\prime \prime}(t)+Q^{\prime}(t)+100 Q=\cos (10 t), \quad Q(0)=0, \quad Q^{\prime}(0)=1
$$

E $R=1, C=1 / 100, F=0, \beta$ not relevant \Rightarrow

$$
Q^{\prime \prime}(t)+Q^{\prime}(t)+100 Q=0, \quad Q(0)=0, \quad Q^{\prime}(0)=1
$$

F $R=0, C=1 / 100, F=0, \beta$ not relevant \Rightarrow

$$
Q^{\prime \prime}(t)+100 Q=0, \quad Q(0)=0, \quad Q^{\prime}(0)=1
$$

G $R=8.1, C=1 / 100, F=0, \beta$ not relevant \Rightarrow

$$
Q^{\prime \prime}(t)+8.1 Q^{\prime}(t)+16 Q=0, \quad Q(0)=0, \quad Q^{\prime}(0)=1
$$

H $R=0, C=1 / 100, F=1, \beta=9 \Rightarrow$
$Q^{\prime \prime}(t)+100 Q=\cos (9 t), \quad Q(0)=0, \quad Q^{\prime}(0)=1$.
Match the differential equation with its solution's plot by writing the appropriate letter in the box to the left of the plot, on the following page.

Hints:

1. You don't need to solve each problem completely.
2. Look at the plots carefully and don't forget to check the axis scales.

