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EXAMPLE 5

SOLUTION

We briefly review this method. Recall from calculus that a rational function of the form
P(s)/Q(s), where P(s) and Q(s) are polynomials with the degree of P less than the degree of Q,
has a partial fraction expansion whose form is based on the linear and quadratic factors of
O(s). (We assume the coefficients of the polynomials to be real numbers.) There are three cases
to consider:

1. Nonrepeated linear factors.
2. Repeated linear factors.

3. Quadratic factors.

1. Nonrepeated Linear Factors

If Q(s) can be factored into a product of distinct linear factors,
Qls) = (s = n)ls ~ r) = (5= 1) ,
where the r;’s are all distinct real numbers, then the partial fraction expansion has the form

Pl(s A A A,
()= 1 . S—— ’
o) s=r s-—n s—r,

where the A/s are real numbers. There are various ways of determining the constants
Ay, ..., A, In the next example, we demonstrate two such methods.

Determine &£~ '{F}, where

Ts— 1
F(S)=(s+1)(s+z)(s—3)'

We begin by finding the partial fraction expansion for F(s). The denominator consists of three
distinct linear factors, so the expansion has the form

Ts — 1 A B C
6 -—] + + ]
9 R Teia—0 ot TossTo-8

where A, B, and C are real numbers to be determined.

One procedure that works for all partial fraction expansions is first to multiply the
expansion equation by the denominator of the given rational function. This leaves us with
two identical polynomials. Equating the coefficients of s* leads to a system of linear
equations that we can solve to determine the unknown constants. In this example, we
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multiply (6) by (s + 1){s + 2)(s — 3) and find
(7) s - 1=Als +2)(s = 3) + Bls + 1I){s = 3) + Cls + V(s +2)
which reduces to
7s — 1= (A + B+ C)s? + (—A — 2B + 3C)s + (—64 — 3B + 2C).
Equating the coefficients of 5%, s, and 1 gives the system of linear equations
A+B+C=0,
~A=2B+3C=17,
~64 — 3B+ 2C = —1,
Solving this system yields A = 2, B = —3, and C = 1. Hence

T8 — 1 2 3 1
8 = - + .
® s+ Ds+2)(s—-3) s+1 s+2 s—3

An alternative method for finding the constants A, B, and C from (7) is to choose three
values for s and substitute them into (7) to obtain three linear equations in the three unknowns.
If we are careful in our choice of the values for s, the system is easy to solve. In this case, equa-
tion (7) obviously simplifies if s = —1, —2, or 3. Putting s = —1 gives

-7 — 1 = A(1)(=4) + B(0) + €(0) ,
-8 = —44 .
Hence A = 2. Next, setting s = —2 gives
~14 — 1 = A(0) + B{(—1)(-3) + ¢(0) ,
-15=58,

and so B = —3. Finally, Jetting s = 3, we similarly find that C = 1. In the case of nonrepeated
linear factors, the alternative method is easier to use.
Now that we have obtained the partial fraction expansion (8), we use linearity to compute

‘5’3”{(.3- T 1)35:21)(5- - 3)}(’) - "Cg‘]{sf- R 3}(‘)
- 255_1{'?“; 1}(’) N 35’3“]{5 i 2}(’}

; gm%{;m}g}(;)

=2 — 3" ¥ 4+ ¢ | mEng

TRigorously speaking, equation (7) was derived for s different from -1, —2, and 3, but by continuity it holds for these
values as well.
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EXAMPLE 6

SOLUTION

2. Repeated Linear Factors

Let s — r be a factor of Q(s) and suppose (s — #)" is the highest power of s — r that divides

O(s). Then the portion of the partial fraction expansion of P(.s')/Q(s) that corresponds o the

term (s — r)™is :
Ax Az

A

vy +.--+
s—r  (s~rP (s —ry’

where the A;’s are real numbers,

2+ 05 4+ 2
(s = 1)s + 3)} '

Since s — 1 is a repeated linear factor with muldiplicity two and s -+ 3 is a noarepeated linear
factor, the partial fraction expansion has the form

2
s2+95+2 A B_ . _C

Determine $£7! {

(s=1Ps+3) s-1 (s—1P s+3°
We begin by multiplying both sides by (s — 1/*(s + 3) to obtain
9) s 95+ 2= A0 — D(s+3)+ Bls +3) + C(s — 1)2,

Now observe that when we set s = 1 (or s = ~3), two terms on the right-hand side of (9)
vanish, leaving a linear equation that we can solve for B (or C). Setting 5 = 1 in (9) gives

[+ 9+2=A(0)+4B + C(0) ,

12 =48 ,
and hence B = 3. Similarly, setting s = —3 in (9) gives
9 — 27 + 2 = A(0) + B(0) + 16C
—16 = 16C .

Thus € = —1. Finally, to find A, we pick a different value for s, say s = (. Then, since B = 3
and €' = -1, plugging s = 0 into (9) yields

2=-34+3B+C=-34A+9~1
so that A = 2. Hence

2
...E..
(10) 5 25+2= 2 " 3 - i '
{s—1s+3) s—1 (s~} s+3
We could also have determined the constants A, B, and C by first rewriting equation (9 in
the form

P9+ 2=(A+ O+ 24+ B—2C)s + (=34 + 3B+ C) .

Thex, equating the corresponding coefficients of s%, s, and 1 and solving the resulting system,
weagain find A = 2, B =3, and C = —1 .
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Now that we have derived the partial fraction expansion (10) for the given rational func-
tion, we can determine its inverse Laplace transform:

iﬂ{ffé%gﬁégi}@)zéfﬁ{sfl *(sfly““sia}“)
= 258‘1{? i I}(I) + 359‘{(::]755} (1)

“‘qu{sis}(’)

=2+ 3t — ¢ | meng

3. Quadratic Factors
Let (s — a)* 4 8% be a quadratic factor of Q(s) that cannot be reduced to linear factors with
real coefficients. Suppose m is the highest power of (s — «)* -+ £ that divides Q(s). Then the
portion of the partial fraction expansion that corresponds to {s =~ a)* + B8%is
C]S + D] + CzS + ])2 T s C,”S -+ D,”
(s—af + B [(s—af +p2] (= o + g2
As we saw in Example 4, it is more conveniemt to express C;s + D; in the form
Ads — @) + BB; when we look up the Laplace transforms. So let’s agree to write this portion
of the partial fraction expansion in the equivalent form
A](S - O;') + BBI AZ(S - (l’) + B‘BZ + 0+ Am(s m ﬂf) + IGBH!
s~ aP + g (s = a)f + g2 12 (s —aP + g2

252 + 105 }

XAMPBLE 7 | Determi 1e§£“‘{
E T (52— 25 + 8)s + 1)

SOLUTION We first observe that the quadratic factor s* ~ 25 + § is irreducible (check the sign of the
discriminant in the quadratic formula). Next we write the quadratic in the form (s — a)* + 82
by completing the square: :

2 =2+ 5=1(s—1)2+2%.
Since s? — 25 + 5 and s + 1 are nonrepeated factors, the partial fraction expansion has the
Torm
25% + 10s Als = 1) + 2B C

(s? =25+ 5)(s + 1) a {s—1P2+2% s+1°

When we multiply both sides by the common denominaior, we obfain

(A1) 257+ 10s = [A(s — 1) + 2B])(s + 1) + Cls¥— 25 + 5) .
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In equation (1), let’s put = —1, 1, and 0. With s = — |, we find
2~ 10 = [A{=2) + 2B](0) + C(8) ,
-8 = 8C,
and hence C = —1, With s = 1 in {11), we obtain

2+ 10 = [A(0) + 28](2) + C(4) ,
and since C = —1, the last equation becomes 12 = 4B - 4. Thus B = 4. Finally, setling
s = 0in (11) and using C = —1 and B = 4 gives

0= [A(-1) + 2B](1) + C(5) ,

0=~-A+8-35,

A=3,
Hence A = 3, B =4, and C = —1 so that
25% + 10s 3(s — 1) + 2(4) 1

(=25 +5)(s+1) (s—12+2% s+1°

With this partial fraction expansion in hand, we can immediately determine the inverse
Laplace transform:

ggwl{( 252 + 10s )}{:) _ 513*1{3(” =~ Uf“ 2(4) 1 }(E)

§2 25+ 8)s + 1 (s— 1F+28 s+1

. 4sgﬂ{m}(¢) - 5’3"{3 ! 1}(1)

= 3ecos 2t + de'sin 2t — ¢, @End




