Undetermined Vectors Example

Problem: Find the general solution of the linear system of equations
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Solution:

The system of equations is linear, it can be written as
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The homogeneous solution X}, (¢) is
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(we already computed this; see notes on repeated eigenvalues).

To find the particular solution X, we’ll use the method of undetermined vectors. First we write down our equation in
such a way that we identify constant vector coefficients to the t-dependency in the inhomogeneity. That is,
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Then we seek to find the particular solution X, such that x}, satisfies
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using the method of undetermined vectors.

This is just like before, with second order linear equations! For just a second, think of the inhomogeneity as K+ Ke'
(where K| and K; are some known constants). If we had ay” + by’ +cy = Kt + K, e' and we wanted to find the particular
solution y, using the method of undetermined coefficients, we would use the trial expression y, = Ar +B+Cée'.

Here, instead of undetermined coefficients, we have undetermined vectors - that’s the only difference. Choose the trial
expression
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where d = ( al ), b= ( b] ), ¢= ( Cl ) are our “unknown vectors.” Now all that’s left to do is plug into the
2 2 2

equation and compute what d, b, ¢ must be.



We move everything over to the left hand side and find the coefficients of 0,11, ¢
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Thus we have 3 matrix equations for our 3 unknown vectors:
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Let’s solve (2) first. Ad+ ( g ) =0 = Ad= (
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Finally, let’s solve (3). A¢+ (2)
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Finally we can write down the general solution to the given linear system of ODEs,

Next let’s solve (1). Ab—d=0 = b=A"1a. Since A™! = é( _‘1‘ _12 ) and @ = ( ‘1‘ ),

Thus our particular solution is
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, where [ is the 2 x 2 identity matrix. Then

With an initial condition X(0) the problem is an IVP; we can determine C; and C; using the initial condition to solve

the IVP.



